Case Study for Information Management

資訊管理個案

Managing Knowledge: Tata Consulting Services (Chap. 11)

1021CSIM4C11
TLMXB4C (M1824)
Wed 6, 7, 8 (13:10-16:00) B701

Min-Yuh Day
戴敏育
Assistant Professor
專任助理教授

Dept. of Information Management, Tamkang University
淡江大學 資訊管理學系

http://mail.tku.edu.tw/myday/
2013-12-11
週次 日期 內容 (Subject/Topics)
1 102/09/18 Introduction to Case Study for Information Management
2 102/09/25 Information Systems in Global Business: UPS (Chap. 1)
3 102/10/02 Global E-Business and Collaboration: NTUC Income (Chap. 2)
4 102/10/09 Information Systems, Organization, and Strategy: iPad and Apple (Chap. 3)
5 102/10/16 IT Infrastructure and Emerging Technologies: Salesforce.com (Chap. 5)
6 102/10/23 Foundations of Business Intelligence: Lego (Chap. 6)
<table>
<thead>
<tr>
<th>週次</th>
<th>日期</th>
<th>內容（Subject/Topics）</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>102/10/30</td>
<td>Telecommunications, the Internet, and Wireless Technology: Google, Apple, and Microsoft (Chap. 7)</td>
</tr>
<tr>
<td>8</td>
<td>102/11/06</td>
<td>Securing Information System: Facebook (Chap. 8)</td>
</tr>
<tr>
<td>9</td>
<td>102/11/13</td>
<td>Midterm Report (期中報告)</td>
</tr>
<tr>
<td>10</td>
<td>102/11/20</td>
<td>期中考試週</td>
</tr>
<tr>
<td>11</td>
<td>102/11/27</td>
<td>Enterprise Application: Border States Industries Inc. (BSE) (Chap. 9)</td>
</tr>
<tr>
<td>12</td>
<td>102/12/04</td>
<td>E-commerce: Amazon vs. Walmart (Chap. 10)</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Content (Subject/Topics)</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>102/12/11</td>
<td>Knowledge Management: Tata Consulting Services (Chap. 11) [Invited Speaker]</td>
</tr>
<tr>
<td>14</td>
<td>102/12/18</td>
<td>Enhancing Decision Making: CompStat (Chap. 12)</td>
</tr>
<tr>
<td>15</td>
<td>102/12/25</td>
<td>Building Information Systems: Electronic Medical Records (Chap. 13)</td>
</tr>
<tr>
<td>16</td>
<td>103/01/01</td>
<td>新年紀念日 (放假一天) (New Year’s Day) (Day off)</td>
</tr>
<tr>
<td>17</td>
<td>103/01/08</td>
<td>Final Report (期末報告)</td>
</tr>
<tr>
<td>18</td>
<td>103/01/15</td>
<td>期末考試週</td>
</tr>
</tbody>
</table>
Chap. 11
Knowledge Management: Tata Consulting Services
Case Study: Tata Consulting Services
Knowledge Management and Collaboration at Tata Consulting Services (Chap. 11)

1. Analyze the knowledge management efforts at Tata Consulting Services (TCS) using the knowledge management value chain model. Which tools or activities were used for managing tacit knowledge and which ones are used for explicit knowledge?

2. Describe the growth of knowledge management systems at TCS? How have these systems helped TCS in its business?

3. Describe the collaboration tools used at TCS? What benefits did TCS reap from these tools?

4. How did Web 2.0 tools help TCS manage knowledge and collaboration among its employees?

5. How do you think KM tools have changed some key operational processes at TCS, such as bidding for new projects, project development and implementation, customer service, and so on?

Overview of Fundamental MIS Concepts

Important dimensions of knowledge

• Knowledge is a firm asset
• Knowledge has different forms
• Knowledge has a location
• Knowledge is situational

Knowledge is a firm asset

• Intangible
• Creation of knowledge from data, information, requires organizational resources
• As it is shared, experiences network effects

Knowledge has different forms

- May be explicit (documented) or tacit (residing in minds)
- Know-how, craft, skill
- How to follow procedure
- Knowing why things happen (causality)
Knowledge has a location

• Cognitive event

• Both social and individual

• “Sticky” (hard to move), situated (enmeshed in firm’s culture), contextual (works only in certain situations)

Knowledge is situational

• Conditional:
 – Knowing when to apply procedure

• Contextual:
 – Knowing circumstances to use certain tool

Organizational learning

• Process in which organizations learn
 – Gain experience through collection of data, measurement, trial and error, and feedback
 – Adjust behavior to reflect experience
 • Create new business processes
 • Change patterns of management decision making

Knowledge management

• Knowledge management
 – Set of business processes developed in an organization to create, store, transfer, and apply knowledge

• Knowledge management value chain:
 – Each stage adds value to raw data and information as they are transformed into usable knowledge

1. Knowledge acquisition
2. Knowledge storage
3. Knowledge dissemination
4. Knowledge application

The Knowledge Management Value Chain

Knowledge Business Value Chain

Knowledge Management Systems

Information System
- Acquire: Knowledge discovery, Data mining, Neural networks, Genetic algorithms, Knowledge workstations, Expert knowledge networks
- Store: Document management systems, Knowledge databases, Expert systems
- Disseminate: Intranet portals, Push e-mail reports, Search engines, Collaboration
- Apply: Decision support systems, Enterprise applications

Management and Organizational Activities
- Knowledge culture
- Communities of practice
- Personal networks
- Organizational practices/routines
- Organizational routines
- Organizational culture
- Training: Informal networks, Organizational culture
- New IT-based business processes
- New products and services
- New markets

Major Types of Knowledge Management Systems

Enterprise-Wide Knowledge Management Systems
- General-purpose, integrated, firmwide efforts to collect, store, disseminate, and use digital content and knowledge
- Enterprise content management systems
- Collaboration tools
- Learning management systems
- Knowledge network systems

Knowledge Work Systems
- Specialized workstations and systems that enable scientists, engineers, and other knowledge workers to create and discover new knowledge
- (CAD)
- 3-D virtualization
- Virtual reality
- Investment workstations

Intelligent Techniques
- Tools for discovering patterns and applying knowledge to discrete decisions and knowledge domains
- Data mining
- Neural networks
- Expert systems
- Case-based reasoning
- Fuzzy logic
- Genetic algorithms
- Intelligent agents

An enterprise content management system has capabilities for classifying, organizing, and managing structured and semistructured knowledge and making it available throughout the enterprise.

An Enterprise Knowledge Network System

Subject matter experts

Expert 1
Expert 2
Expert 3

Previous Solutions
Best Practices
Lessons Learned

Documents
Files
Other

Browse search

Share with others

Requirements of Knowledge Work Systems

External knowledge base

SOFTWARE
- Graphics
- Visualization
- Modeling
- Simulation
- Document management
- Communications

User interface

Hardware platform: knowledge workstation

Examples of knowledge work systems

• CAD (computer-aided design):
 – Creation of engineering or architectural designs

• Virtual reality systems:
 – Simulate real-life environments
 – 3-D medical modeling for surgeons
 – Augmented reality (AR) systems
 – VRML

• Investment workstations:
 – Streamline investment process and consolidate internal, external data for brokers, traders, portfolio managers

Intelligent Techniques

• Intelligent techniques: Used to capture individual and collective knowledge and to extend knowledge base
 – To capture tacit knowledge: Expert systems, case-based reasoning, fuzzy logic
 – Knowledge discovery: Neural networks and data mining
 – Generating solutions to complex problems: Genetic algorithms
 – Automating tasks: Intelligent agents

• Artificial intelligence (AI) technology:
 – Computer-based systems that emulate human behavior

Expert systems

• Capture tacit knowledge in very specific and limited domain of human expertise
• Capture knowledge of skilled employees as set of rules in software system that can be used by others in organization
• Typically perform limited tasks that may take a few minutes or hours, e.g.:
 – Diagnosing malfunctioning machine
 – Determining whether to grant credit for loan
• Used for discrete, highly structured decision-making

Rules in an Expert System

A --> B
If INC > 50,000
Ask about car payments
Else EXIT

B --> C
If car payment < 10% of income
Ask about mortgage payment
Else EXIT

C --> D
If mortgage payment < 20% of income
Grant credit
Else EXIT

D --> E
If D, ask about years employed

E --> F
If years >= 4
Grant 10,000 line
Else do G

G --> H
If years < 4
Ask about other debt

H --> F
If other debt < 5% of income
Do F
Else do I

D
Grant credit line

F
Limit 10,000

I
Limit 3,000

Inference Engines in Expert Systems

Income Rules
- If INC > $100,000 then life ins
- If INC > $50,000 and $100,000 then term ins

Real Estate Rules
- If REstate then further contact
 - If REstate > $1,000,000 then send FinAdv

Other Accounts
- If not on dbase, then add prospect file
- If FinAdv then prepare sales kit

If life insurance send sales rep
If term insurance send brochure
If sales rep or term ins or FinAdv
then search dbase

How Case-Based Reasoning Works

1. User describes the problem
2. System searches database for similar cases
3. System asks user additional questions to narrow search
4. System finds closest fit and retrieves solution
5. System modifies the solution to better fit the problem
6. System stores problem and successful solution in the database

Fuzzy Logic for Temperature Control

Neural networks

• Find patterns and relationships in massive amounts of data too complicated for humans to analyze
• “Learn” patterns by searching for relationships, building models, and correcting over and over again
• Humans “train” network by feeding it data inputs for which outputs are known, to help neural network learn solution by example
• Used in medicine, science, and business for problems in pattern classification, prediction, financial analysis, and control and optimization

• Machine learning
 – Related AI technology allowing computers to learn by extracting information using computation and statistical methods

How a Neural Network Works

Data
- Age
- Income
- Purchase history
- Frequency of purchases
- Average purchase size

Results
- Valid purchase
- Fraudulent purchase

The Components of a Genetic Algorithm

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Weight</th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Long</td>
<td>Wide</td>
<td>Light</td>
</tr>
<tr>
<td>2</td>
<td>Short</td>
<td>Narrow</td>
<td>Heavy</td>
</tr>
<tr>
<td>3</td>
<td>Long</td>
<td>Narrow</td>
<td>Heavy</td>
</tr>
<tr>
<td>4</td>
<td>Short</td>
<td>Medium</td>
<td>Light</td>
</tr>
<tr>
<td>5</td>
<td>Long</td>
<td>Medium</td>
<td>Very light</td>
</tr>
</tbody>
</table>

A population of chromosomes | *Decoding of chromosomes* | *Evaluation of chromosomes*

Hybrid AI systems

• Genetic algorithms, fuzzy logic, neural networks, and expert systems integrated into single application to take advantage of best features of each

• E.g., Matsushita “neurofuzzy” washing machine that combines fuzzy logic with neural networks

Intelligent agents

• Work in background to carry out specific, repetitive, and predictable tasks for user, process, or application

• Use limited built-in or learned knowledge base to accomplish tasks or make decisions on user’s behalf
 – Deleting junk e-mail
 – Finding cheapest airfare

• Agent-based modeling applications:
 – Systems of autonomous agents
 – Model behavior of consumers, stock markets, and supply chains; used to predict spread of epidemics

INTELLIGENT AGENTS IN P&G’S SUPPLY CHAIN NETWORK

1. Software agents schedule deliveries from suppliers. If a supplier can't deliver on time, agents negotiate with other suppliers to create an alternative delivery schedule.

2. Software agents collect real-time sales data on each P&G product from multiple retail stores. They relay the data to P&G production for replenishing orders and to sales and marketing for trend analysis.

3. Software agents schedule shipments from distributors to retailers, giving priority to retailers whose inventories are low. If a shipment to a retailer is delayed, agents find an alternative trucker.

Case Study: CompStat

Does CompStat Reduce Crime? (Chap. 12)

1. What management, organization, and technology factors make CompStat effective?

2. Can police departments effectively combat crime without the CompStat system?
 Is community policing incompatible with CompStat? Explain your answer.

3. Why would officers misreport certain data to CompStat?
 What should be done about the misreporting of data? How can it be detected?
資訊管理個案
(Case Study for Information Management)

1. 請同學於資訊管理個案討論前
 應詳細研讀個案，並思考個案研究問題。

2. 請同學於上課前複習相關資訊管理相關
 理論，以作為個案分析及擬定管理對策
 的依據。

3. 請同學於上課前
 先繳交個案研究問題書面報告。
References

– 周宣光 譯 (2011)，資訊管理系統－管理數位化公司，第12版，東華書局